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1 Foreward

Developing mathematical tools for describing the collective motion of multi-agent systems

is critical for new approaches that should enhance Army operations, since such tools should

ultimately lead to efficient means of controlling the collective motion. Multi-agent systems

originate from various applications, from biology to physics to transportation to multi-robot

systems. They display complex behavior [14, 25, 7, 37], with pattern formation and swarming

as observed in biological populations including bacterial colonies [1, 3, 4], slime molds [22, 27],

locusts [13] and fish [8]. Mathematical studies of this behavior have been performed for a few

decades. The information gained from these studies has already led to an increased ability

to intelligently design and control man-made vehicles [9, 19, 21, 26, 35]. The mathematical

models can capture emergent properties of numerous existing and future applications of

military and industrial platforms.

Several types of mathematical models have been used to describe coherent patterns and

swarms. One popular approach is based on a continuum approximation in which scalar and

vector fields are use d for the relevant quantities [13, 16, 32, 33, 34]. Another popular ap-

proach is based on treating every individual or object as a discrete particle [8, 15, 16, 33, 36].

Such many-particle systems typically have their own dynamics, but interact with others. In

many programs of DoD interest, interacting particles in external static or time-dependent

potentials is a central theme in the construction and analysis of organized behavior. Dy-

namically interacting autonomous swarmer (DIAS) systems are comprised of a multitude of

simple autonomous vehicles, which are loosely coupled via communication. They will play

a key role in future deployments, as the drive to miniaturize electronic devices results in

smaller and more capable self-mobile machines with limited decision making abilities.

A basic physical principle is that, as systems become smaller, an increasingly important

role is played by external fluctuations in the environment. Interacting particles subject to

external fluctuations but coupled through communication needs to be understood from a

point of view of stochastically modulated many-body dynamical systems. A major math-

ematical challenge comes from the fact that the regular motion, without fluctuations, has

multiple attractors, and fluctuations cause inter-attractor switching, thus bringing additional

time scales associated with the switching rates. The delicate interplay of interaction, fluctu-

ations, and multi-stability provides a foundation for pattern formation. Understanding this

interplay is a key to the control of the many-particle dynamics. Analysis of stochastic inter-

acting dynamical systems would lead to streamlined computer, communication, surveillance,

and reconnaissance systems.

This research couples the rapidly developing areas of nonlinear phenomena, fluctuations,
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and dissipative systems far from thermal equilibrium. A key concept in the analysis of mo-

tion is noise-activated escape from a metastable state of local equilibrium, e.g. a state at

the minimum of a potential well. Such escape leads to an interstate switching. Activated

processes underlie many fundamental phenomena in nature, such as diffusion in solids, nu-

cleation, and protein folding. Much less is known about switching of systems away from

thermal equilibrium, especially those driven by time-dependent potentials used in swarming

and pattern-forming models. It is poorly understood whether escape rates of nonequilibrium

systems should display any universal scaling dependence on control parameters at all. Gain-

ing an insight into escape in driven systems requires that one knows how a system moves

in an activated process. Even though an activated process happens at random, when it

does happen the system is most likely to follow a certain dynamical path [18, 10, 24, 28, 5].

Knowing this path opens the way for control over activated processes. Such knowledge is

useful for random clustering of dynamical patterns. Much of the motivation comes from our

recent evidence that activated processes that induce escape can be selectively controlled.
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2 Statement of the problem studied

The objective of this project is to develop concepts for the analysis of the dynamics of

interacting systems in a noisy environment. New approaches should lead to a better under-

standing of system dynamics and generate novel efficient algorithms of stochastic optimal

control for interacting systems.

One of the central issues that we address is dynamics of noise-induced switching. The

phenomenon underlies a large portion of all significant changes that occur in systems in

noisy environment. Examples range from breakdown events in complex systems to swarm-

ing in systems of interacting vehicles to overcoming barriers by such vehicles. Therefore

understanding the switching dynamics is instrumental for developing highly efficient ways of

controlling noisy systems.

Central to the theoretical approach is the notion that the dynamical trajectories followed

in switching form narrow tubes. We demonstrate that the tubes can be directly observed in

experiment. Quantitatively, the tubes are characterized by the distribution of trajectories.

To find it theoretically we modify the instanton technique developed in a completely different

area, the quantum field theory. This approach maps the problem of most probable switching

trajectories in noisy dissipative systems onto a problem of Hamiltonian dynamics of an

auxiliary system of a higher dimension.

This award facilitated the formation of the new team of investigators consisting of an ap-

plied mathematician, a theoretical physicist, and an experimental physicist. It also included

collaboration with applied mathematician Ira Schwartz at the Naval Research Laboratory.

Utilizing the complementary skill sets, the group produced significant results in physics,

mathematics, and the life sciences.

3 Summary of the most important results

The following is a brief summary of the most important results:

1. We have solved the long-standing problem of noise-induced switching in periodically

modulated systems. We found the distribution of trajectories followed in switching.

This distribution may display several peaks separated by the modulation period. An-

alytical results agree with the results of simulations of a Brownian particle in a model

modulated potential.

2. We have solved the problem of control of distribution over period-two states. We show

that a comparatively weak field can strongly affect the rates of switching between the
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states. The logarithm of the rate change is linear in the control field amplitude. We

predict lifting of degeneracy of period-two states and the possibility of an extremely

strong fluctuation-mediated wave mixing.

3. To interpret switching events in the driven colloidal system, it is necessary to track each

object in an ensemble of nominally identical objects. We have developed algorithms

to identify large fluctuations in the space of particle coordinates. The method forms

a predictor conditioned on the existing flow and Gaussian noise amplitude, then flags

events with low probability. The algorithm searches for correlations among the particles

that precede switching events. The approach can be extended to include non-Gaussian

noise and periodic modulation of the optical field.

4. We have made significant progress in developing a general mathematical approach to

the analysis of switching in systems driven by a Gaussian and a non-Gaussian noise.

Our preliminary results indicate the possibility of exponentially strong effect of a non-

Gaussian noise on the switching rate. The effect can be expressed in a closed form

in terms of the characteristic functional of the noise, which is important for many

applications. We have started studying specific important types of non-Gaussian noise,

and in particular, shot noise. Analytical results agree with the results of simulations

of a Brownian particle in a model modulated potential.

5. We have developed a formulation that allows one to observe switching trajectories

and find the most probable paths without making any preliminary assumptions about

the system. This formulation has been tested experimentally using a mesoscopic sys-

tem of significant interest, a micro-electro-mechanical oscillator. All major theoretical

predictions have been fully confirmed in the experiment, see Fig. 1.

6. We have developed a theory of disease extinction in large populations and discovered a

new scaling behavior of the extinction rate with the varying reproduction rate of infec-

tion. We have also developed a mathematical approach that allowed us to predict and

describe the exponentially strong effect of random vaccination on disease extinction.

7. We have developed a theory and analysis of delayed communication in stochastic

swarms to examine the effect of latency in coordinated behavior of multiple vehicles.

We show that with the addition of a time delay, the model possesses a transition that

depends on the size of the coupling amplitude. This transition is independent of the

initial swarm state (traveling or rotating) and is characterized by the alignment of all

of the individuals along with a swarm oscillation. See Fig. 2.
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Figure 1: (a) Switching probability distribution in a parametrically driven micro-electro-
mechanical oscillator. The probability distribution P12(X,Y ) is measured for switching out of
state A1 into state A2. (b) The peak locations of the distribution are plotted as black circles and
the theoretical most probable switching path is indicated by the red line. All trajectories originate
from within the green circle in the vicinity of A1 and later arrive at the green circle around A2.
The portion of the distribution outside the blue lines is omitted.

8. We show that steady-state work fluctuations in periodically modulated systems dis-

play universal features, which are not described by the standard fluctuation theorems.

Modulated systems often have coexisting stable periodic states. We find that work

fluctuations sharply increase near a kinetic phase transition where the state popula-

tions are close to each other. This exponential peak is a new strongly pronounced

phenomenon which has not been previously appreciated. We also show that the work

variance displays scaling with the distance to a bifurcation point where a stable state

disappears and find the critical exponent for a saddle-node bifurcation. See Fig. 3.

9. We explore the distribution of paths followed in fluctuation-induced switching between

coexisting stable states. We introduce a quantitative characteristic of the path distri-

bution in phase space that does not require a priori knowledge of system dynamics.

The theory of the distribution is developed and its direct measurement is performed

in a micromechanical oscillator driven into parametric resonance. The experimental

and theoretical results on the shape and position of the distribution are in excellent

agreement, with no adjustable parameters. In addition, the experiment provides the

first demonstration of the lack of time-reversal symmetry in switching of systems far

from thermal equilibrium. The results open the possibility of efficient control of the
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deriving the mean field equations without noise. The coordi-
nates xi and yi of each particle in the swarm can be written as
follows:

xi = X + �xi and yi = Y + �yi, �4�

where X and Y are the coordinates of the center of mass R of
the swarm. Substitution of Eq. �4� into the second-order dif-
ferential equation that is equivalent to Eqs. �1�–�3� gives an
evolution equation for each xi and yi. Summing all i of these
equations, using the fact that

1

N
�
i=1

N

xi�t� = X�t� and
1

N
�
i=1

N

yi�t� = Y�t� , �5�

and ignoring all fluctuation terms, leads to the zero-order
mean field equations for the center of mass as follows:

Ẍ�t� = ��1 − Ẋ2�Ẋ − ẊẎ2��t� − a�X�t� − X�t − ��� , �6�

Ÿ�t� = ��1 − Ẏ2�Ẏ − ẎẊ2��t� − a�Y�t� − Y�t − ��� . �7�

The steady state is given by Ẋ�t�= Ẏ�t�=0, X�t�=X�t−��,
and Y�t�=Y�t−��. Consideration of small disturbances about
the steady state allows one to determine the linear stability.
The characteristic equation associated with the linearization
of Eqs. �6� and �7� is

��1 − �� + ae−�� − a = 0, �8�

where the exponential term exp�−��� is due to the time delay
in the governing equations. Since Eq. �8� is transcendental
�which is often the case for delay differential equations�,

there exists the possibility of an infinite number of solutions.
Our numerical simulations indicate the existence of a su-

percritical Hopf bifurcation as the value of the coupling pa-
rameter a is increased �Figs. 2–4�. We identify the Hopf
bifurcation point by choosing the eigenvalue to be purely
imaginary. Then our choice of �= i� is substituted into Eq.
�8�. The separation of Eq. �8� into real and imaginary parts
leads to an equation for the frequency �, along with an equa-
tion for the value of a at the Hopf bifurcation point. The two
equations are
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FIG. 3. Snapshots of a swarm taken at �a� t=50, �b� t=60, �c�
t=62, �d� t=64, �e� t=66, �f� t=68, �g� t=70, �h� t=72, �i� t=74,
and �j� t=76, with a=4, N=300, and D=0.08. The swarm was in a
rotational state when the time delay of �=1 was switched on at t
=40.
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FIG. 4. Motion of the oscillating swarm about the center of
mass of the stationary, rotating swarm. The oscillating swarm is
shown at t=90.2 �left�, t=90.6 �top�, t=91.0 �right�, and t=91.4
�bottom�. The location of the center of mass of the swarm �at t
=40� is denoted with a “cross” marker �center�.
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�7�. The inset shows the stochastic trajectory of the center of mass
of the swarm from t=45 to t=90 for the example shown in Fig. 3.

DELAY-INDUCED INSTABILITIES IN SELF-… PHYSICAL REVIEW E 77, 035203�R� �2008�

RAPID COMMUNICATIONS

035203-3

Figure 2: Snapshots of a swarm taken at (a) t =50, (b) t =60, (c) t =62, (d) t =64, (e) t =66, (f)
t =68, (g) t =70, (h) t =72, (i) t =74, and (j) t =76, with N=300 particles, and noise intensity,
D=0.08. The swarm was in a rotational state when the time delay of 1 was switched on at t =40.
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Figure 3: Scaled ratios of the partial work variance to mean partial work for fluctuations about
periodic attractors of a resonantly modulated Duffing oscillator, as functions of the reduced squared
modulation amplitude β. The curves 1 and 2 refer to large- and small-amplitude vibrations, re-
spectively. The functions S1,2 diverge at the corresponding bifurcation points of the oscillator.
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Figure 4: Phase portrait of a two-variable system with two stable states A1 and A2. The saddle
point S lies on the separatrix that separates the corresponding basins of attraction. The thin solid
lines show the downhill deterministic trajectories from the saddle to the attractors. A portion
of the separatrix near the saddle point is shown as the dashed line. The thick solid line shows
the most probable trajectory that the system follows in a fluctuation from A1 to the saddle. The
most probable switching path (MPSP) from A1 to A2 is comprised by this uphill trajectory and
the downhill trajectory from S to A2. The plot refers to the system studied experimentally, an
underdamped nonlinear parametrically modulated oscillator with the modulation frequency close
to twice the eigenfrequency.

switching probability based on the measured narrow path distribution. See Fig. 4.

10. Population extinction is of central interest for population dynamics. It may occur from

a large rare fluctuation. We find that, in contrast to related large-fluctuation effects like

noise-induced interstate switching, quite generally extinction rates in multipopulation

systems display fragility, where the height of the effective barrier to be overcome in

the fluctuation depends on the system parameters nonanalytically. We show that one

of the best-known models of epidemiology, the susceptible-infectious-susceptible (SIS)

model, is fragile to total population fluctuations. See Figs. 5 and 6.

11. We have investigated the stochastic extinction processes in a class of epidemic models

and showed that the effective entropic barrier for extinction in a susceptibleinfected-

susceptible epidemic model displays scaling with the distance to the bifurcation point,

with an unusual critical exponent. We make a direct comparison between predictions

and numerical simulations. We also consider the effect of non-Gaussian vaccine sched-

ules, and show numerically how the extinction process may be enhanced when the

vaccine schedules are Poisson distributed. See Fig. 7.
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Figure 5: A snapshot of the probability ρ(X) near the extinction plane X2 = 0 for the SIS model; ρ
is quasi-continuous in X1/N , with X1 and X2 being the total numbers of susceptibles and infected,
respectively, and N being the charateristic total population. The data of simulations refer to
µt = 9, R0 = 4, µ′ ≡ µ/(µ + κ) = 0.1, where µ is the birth-death rate and R0 is the infection
reproduction rate. For t = 0 the system was at the stabl;e state XA, the total number of particles
was N = 50. (b) Asymptotic optimal trajectories for extinction for µ → 0 (solid line) and µ = 0
(dashed line).

Figure 6: The switching exponent Q for the SIS model of epidemics. The epidemics extinction
rate is W ∝ exp(−Q). The solid and dashed lines show the results for the birth-death rate µ→ 0
and µ = 0, respectively. The data points are obtained from the numerical solution of the master
equation for the total initial populations N = 50 and N = 100, which made it possible to directly
extract the exponent Q.
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